INTEGRATED MANAGEMENT OF ROOT-KNOT NEMATODE, *MELOIDOGYNE INCOGNITA* INFECTING COWPEA PLANTS

Abo-Korah, M.S.
Economic Entomology and Agricultural Zoology Dept., Fac. of Agric., Menoufia Univ., Shibin El-Kom, Egypt.

ORCID : 0000-0001-5189-6378

Received: May 14, 2022 Accepted: Jun. 4, 2022

ABSTRACT: This experiment was conducted to evaluate the efficacy of saponin extract, algae, *Chlorella vulgaris*, and a bio-nematicide BioNematon (commercial formulation of the *Paecilomyces lilacinus*, half dose) and the possibility of creating an integrated control program on root-knot nematodes infected cowpea under field conditions compared to chemical nematicide, Carbofuran, as well as the effect of these treatments on the vegetative characteristics of cowpea plants. All treatments caused reduction percentages in root-knot nematode *Meloidogyne incognita* juveniles, to take into the triple treatment (saponin extract + algae + BioNematon half dose) which gave the highest reduction percentage (82.6%), followed by the chemical nematicide Carbofuran (80.3%), then the BioNematon half dose, algae and saponin extract solely by achievement (67.3, 66.3 and 58.4%), respectively, compared with control. Tribble treatment (saponin extract + algae + BioNematon) caused significant decrease in mature females, egg masses and root galls (82.9, 85.8, 80%) and it was (81.1, 82.8 and 80.0%) for Carbofuran treatment, respectively. As well as, triple treatment also improved the vegetative properties of cowpea plants, caused an increase in plant height, shoot weight and root weight by percentages (75.3, 78.8 and 96.3%) while contrariwise occurred by appliance of Carbofuran (46.9, 38.7 and 83.7%), respectively, compared to the control. This study succinct recommended that, the use of triple treatment (saponin extract + algae + BioNematon half dose) as an integrated control program for *M. incognita* which infected cowpea plants practically considerable by its safety, inexpensive, harmlessness, in addition it also reduced root-knot nematode, *M. incognita* juveniles, mature females, root galls, and improved the vegetative properties of cowpea plants in greater proportions than the chemical nematicide Carbofuran.

Key words: Meloidogyne, Chlorella vulgaris, BioNematon, Saponin, Control, Cowpea.

INTRODUCTION

Cowpea, *Vigna unguiculata* (L.) Walp is one of the most famous type of legume crops in the world, characterized by its high nutritional value because it contains many important nutritional compounds essentially for the body such as fiber, proteins, minerals (iron, copper, potassium and manganese), as well as containing vitamin B and low calories (Kamara et al., 2016 and Kapravelou et al., 2020). Kidney beans are among the best sources of vegetable protein, rich in healthy fibers, which control blood sugar levels, promote colon health, contain dietary fibers, which stimulate the digestion process and maintain the health of the digestive system (Prince et al., 2020).

Root-knot nematodes *Meloidogyne incognita* infect cowpea plants, causing root galls, weakening the roots, which leads to yellowing and falling of leaves and consequently caused great economic losses (Metwally et al., 2019).

Chemical nematicides are widely used to control parasitic nematodes on vegetables, fruits and ornamental plants in Egypt, in spite of its expensiveness costs of other agricultural operations, not safety for humans, animals and plants (Barker and Koenning, 1998). There are many safety and alternative materials that can be used to control nematodes, such as saponins extract which can be applicator instead chemical nematicides (Yang et al., 2015). Saponin extract was evaluated by El-marzoky and El-ashry, 2016 in Egypt and found to be effective against plant nematodes.

The green algae, *Chlorella vulgaris* contains proteins, amino acids, antioxidants, and major
and minor elements, therefore, it is considered one of the important growth factors for the plant and also caused aptly incensement in plant immunity in resisting pathogens as plant parasitic nematodes (Bileva, 2013).

BioNematon (a commercial formulation of the Paecilomyces lilacinus) bio-nematicide that attacks and kills eggs, mature females and reduces the population density of parasitic nematodes, in addition it can be release a leucino toxin, which has an exterminating effectiveness on plant parasitic nematodes (Ibrahim et al., 2019).

The present study aims to use safety, alternative materials substituent chemical nematicides and to establish an integrated control program for root knot nematodes that infect cowpea plants.

MATERIALS AND METHODS

Potted experiment was conducted at the research Farm of the Faculty of Agriculture, Menoufia University, Shebin El-Kom, Egypt, to study the effect of saponin extract, algae Chlorella vulgaris and the bio-nematicide BioNematon (half dose) in comparison to the chemical nematicide Carbofuran (full dose) on root-knot nematodes Meloidogyne incognita which infected cowpea plants, as well as the possibility of establishing an integrated control program by these treatments and its effectiveness on the vegetative characteristics of cowpea plants under open field conditions at 25±2°C.

Preparation of Saponin extract:

It is an extract of the leaves and stems of the Quillaja saponaria plant, obtained from the National Research Center, Dokki, Cairo. The tested solution prepared by adding 2 ml of the extract to the beaker and mixed with a small amount of distilled water and left for two days to extract all ingredients and then completed the volume to 100 ml with distilled water. It was added at a rate of 20 ml / plant according to (El-marzoky and El-ashry, 2016).

The green algae Chlorella vulgaris:

The green algae Chlorella vulgaris, obtained from the National Institute of Marine Sciences and Fisheries. The trials included applying of 2.0 g algae per plant/pot dissolved in 100 ml water. The plants were watered once with this solution according to Bileva, 2013.

Bio-Nematon:

Bio- Nematon 1 % WP contains 1 x 10^4 cfu/mg of fungus (commercial product of Paecilomyces lilacinus) was used according to the recommended dose (4kg/ fed) at the rate of 7 g per pot as half dose according to Ibrahim et al., 2019. It was obtained from Nematode Research Department, Plant Pathology Institute, Agric. Research Center, Giza.

Carbofuran:

Common name is Carbofuran, mole Formula is C12H15NO3, chemical Name is: 2, 3-di hydro-2, 2-dimethyl-7-benzofuranyl methyl carbamate, Formulation is 10% G with trade name (Carburan). It was applied as soil treatment at the rate of 20 g per pot (6 kg / feddan). It was applied with nematode inoculation according to Abo-Korah, 2017.

Nematode culture:

The root-knot nematode M. incognita juveniles (J2s) were collected from pure culture reared on cotton Gossypium barbadense (Gallini) variety (Delta Pin61) at nematode laboratory of the Entomology and Zoology Department, Faculty of Agriculture, Menoufia University; cotton roots were washed with the egg masses in the water to clean it from the soil sticking to the roots, then the roots cutting to pieces of (1 cm) long and stirred in sodium hypochlorite (0.5%) for 3 minutes and shake well in sterile water (Kerry and Bourne, 2002). Nematode eggs were incubated at 25 ± 1°C for 3 to 4 days to obtain second stage juveniles (J2) with modified Baermann funnel method (Gray, 1984) and used in the experimental infection procedure according to Chuixu et al., 2013.

Experimental preparation and design:

The experiment was conducted at the research Farm of the Faculty of Agriculture, Menoufia University, under open field conditions.
Integrated management of root-knot nematode, *Meloidogyne incognita* infecting cowpea plants

in plastic pots with a capacity of 4 kg, sterilized clay-sand mixed soil (1:1, v/v) and a size of 25 cm. After sterilization, the seeds of the cowpea variety (Kafr El Sheikh) were planted. Two weeks after planting, root-knot nematode *M. incognita* infection was added at a rate of 1000 juveniles per cowpea seed and added by pipette into three holes around seeds, and each treatment replicated three replicates. Experiment layout was randomized complete block design. At the end of the experiment, vegetative measurements were taken.

Nematode Extraction and Enumeration:

Soil samples were taken after planting at 30, 60, 90 and 120 days. Three replicates, each one of 100 g soil and roots were taken from each treatment to extract nematodes, nematode extraction occurred by modified Baermann funnels for 72 hours, where it was counted and identified according to methods described by Southey, 1970. At the end of the experiment roots were carefully washed, and the nematode galls were counted and indexed according to Southey (1970) (0 galls/ root = 0 index , 1-2 galls= 1 , 3-10 galls = 3 , 11-30 galls = 3 , 31-100 galls = 4 , more than 100 galls/ root = 5 index). Egg masses were assessed by staining the roots with Phloxin-B solution (0.15 g/l tap water) for 20 minutes according to (Daykin and Hussey, 1985). Also, one gram per root was stained by acid fuchsine lactophenol to count root knot nematode stages inside the roots with the aid of a dissecting microscope.

Statistical analysis:

The obtained data were subjected to analysis of variance (ANOVA) using CoStat Software, Version 6.4 (2008). The mean differences were compared by Least Significant Difference (L.S.D. 5%).

Reduction percentages were counted according to (Abbott formula 1925).

Increase or decrease % = treatment – Control / Control x 100.

RESULTS AND DISCUSSION

Results in Table (1) revealed that, there are significant differences between all treatments under study which caused reduction in root-knot nematode *Meloidogyne incognita* juveniles that infected cowpea plants.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Aver. no. of Meloidogyne incognita juveniles/ 100 g soil</th>
<th>Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days post-treatments</td>
<td>30 Day</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Saponin extract</td>
<td>827.9 b 684.0 b 594.3 b 406.3 b 628.1 b</td>
<td>39.0 54.2 63.0 77.2 58.4</td>
</tr>
<tr>
<td>Algae C. vulgaris</td>
<td>712.9 d 591.3 c 431.3 c 264.0 c 499.9 c</td>
<td>47.5 60.4 73.1 85.2 66.6</td>
</tr>
<tr>
<td>Bio-Nematon (half dose)</td>
<td>749.0 c 536.0 d 409.0 d 251.0 d 486.3 d</td>
<td>44.8 64.1 74.5 85.9 67.3</td>
</tr>
<tr>
<td>Saponin+Algae +Bio-Nematon</td>
<td>467.0 f 284.0 f 198.9 f 71.0 f 255.2 f</td>
<td>65.6 81.0 87.6 96.0 82.6</td>
</tr>
<tr>
<td>Carbofuran (full dose)</td>
<td>507.0 e 331.9 e 217.3 e 97.9 e 288.5 e</td>
<td>62.6 77.8 86.5 94.5 80.3</td>
</tr>
<tr>
<td>Control</td>
<td>1357.9 a 1495.3 a 1607.3 a 1784.0 a 1561.1 a</td>
<td>- - - - -</td>
</tr>
<tr>
<td>LSD 5%</td>
<td>8.8 5.3 7.1 8.9 8.8</td>
<td>- - - - -</td>
</tr>
</tbody>
</table>

means in each column followed by the same letter (s) are not significant differences at 5% level.
The triple treatment (saponin extract + algae C. vulgaris + BioNematon) resulted the highest reduction percentage in M. incognita juveniles (82.6%), followed by Carbofuran (80.3%), then BioNematon, algae and saponin extract solely gave reduction percentages of (67.3, 66.6 and 58.4%) respectively compared to control treatment.

These results are coincident with those obtained by Pelah et al., 2002 who recognized that, the saponin extract from the Quillaja saponaria plant has a significant role in controlling the development of insects and plant parasitic nematodes. D’Addabbo et al., 2011 recorded that, saponin extract has a significant effect on reducing the numbers of plant parasitic nematodes, such as Xiphinema index, Meloidogyne incognita and Globodera rostochiensis. (El-marzoky and El-ashry, 2016) showed that, the effect of saponin on parasitic nematodes is due to its chemical composition where saponin are steroid or triterpenoid glycosides and can use as natural nematicide.

Data in Table (2) showed that, tri treatment (saponin extract + algae C. vulgaris + BioNematon half dose), outperformed the rest of treatments as it reduced the mature females, egg masses and root galls by (82.9, 85.8, 80.0%), followed by that occurred in appliance of the chemical nematicide Carbofuran (81.1, 82.8 and 80.0%), respectively, in comparison with control. These results confirm that, that of triple treatment is more efficient than the chemical nematicide Carbofuran in controlling root knot nematodes M. incognita that infected cowpea plants.

The obtained results are in agreement with those obtained by Narasimhamurthy et al. (2017) who found that, Paecilomyces lilacinus, attack nematode eggs and eliminate root knots nematodes, as well as improving the vegetative characteristics of the plant. Azam et al. (2013) recorded that. P. lilacinus causes the formation of colonies of fungi on the roots of the plant and attacks the egg masses, as the shell wall decomposes by secreting the chitinase enzyme and feeds on its contents, then attacks and kills the whole female. Metwally et al. (2019) indicated that, BioNematon is an effective bio-nematicide against root-knot nematodes M. incognita that infect cowpea plants, as it reduced root-galls by (60.3%) and egg masses by (26.2%).

Data presented in Table (3) summarized that, the triple treatment (saponin extract + algae C. vulgaris + BioNematon half dose) led to improvement in the vegetative properties of cowpea plants, caused an increments in plant height, shoot weight and root weight with percentages (75.3, 78.8 and 97.6%) superior of both Carbofuran which gave (46.9, 38.7 and 83.7%) respectively, and each of the rest solely treatments compared with control.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Mature females /5groot</th>
<th>No of egg-masses</th>
<th>root gall index</th>
<th>Decrease %</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mature females</td>
<td>Egg-masses</td>
<td>root gall index</td>
<td></td>
</tr>
<tr>
<td>Saponin extract</td>
<td>17.1 b</td>
<td>15.0 b</td>
<td>3.0 b</td>
<td>36.6</td>
<td>35.6</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>Algae C. vulgaris</td>
<td>12.3 c</td>
<td>9.3 d</td>
<td>2.0 c</td>
<td>54.4</td>
<td>60.1</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td>BioNematon (half dose)</td>
<td>14.0 c</td>
<td>11.9 c</td>
<td>2.0 c</td>
<td>48.1</td>
<td>48.9</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td>Saponin+ Algae +BioNematon</td>
<td>4.6 d</td>
<td>3.3 e</td>
<td>1.0 d</td>
<td>82.9</td>
<td>85.8</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>Carbofuran (full dose)</td>
<td>5.1 d</td>
<td>4.0 e</td>
<td>1.0 d</td>
<td>81.1</td>
<td>82.8</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>27.0 a</td>
<td>23.3 a</td>
<td>5.0 a</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LSD 5%</td>
<td>1.7</td>
<td>0.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table (2): Effect of different treatments on mature females, egg-masses and root gall index associated with cowpea plants.

Means in each column followed by the same letter are not significant differences at 5%
Table (3): Influence of some cowpea plant growth parameters by tested treatments.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>plant height (cm)</th>
<th>shoot weight (g)</th>
<th>root weight (g)</th>
<th>Increase %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>plant height</td>
<td>shoot weight</td>
<td>root weight</td>
<td></td>
</tr>
<tr>
<td>Saponin extract</td>
<td>34.2 e</td>
<td>15.0 e</td>
<td>5.0 d</td>
<td>15.5</td>
</tr>
<tr>
<td>Algae C. vulgaris</td>
<td>39.7 c</td>
<td>17.5 c</td>
<td>6.1 c</td>
<td>34.1</td>
</tr>
<tr>
<td>BioNematon (half dose)</td>
<td>37.0 d</td>
<td>16.3 d</td>
<td>7.0 b</td>
<td>25.0</td>
</tr>
<tr>
<td>Saponin+ Algae+BioNematon</td>
<td>51.9 a</td>
<td>24.5 a</td>
<td>8.5 a</td>
<td>75.3</td>
</tr>
<tr>
<td>Carbofuran (full dose)</td>
<td>43.5 b</td>
<td>19.0 b</td>
<td>7.9 a</td>
<td>46.9</td>
</tr>
<tr>
<td>Control</td>
<td>29.6 f</td>
<td>13.7 f</td>
<td>4.3 e</td>
<td>-</td>
</tr>
<tr>
<td>LSD 5%</td>
<td>1.7</td>
<td>0.8</td>
<td>0.6</td>
<td>-</td>
</tr>
</tbody>
</table>

The obtained results are in harmony with those obtained by (Bileva, 2013) and (Bumandalai and Tserennadmid, 2019) who recognized that, the algae *Chlorella vulgaris* act as a good organic bio-fertilizer for the plant, thus increasing its resistance against plant parasitic nematodes and improves the vegetative properties of the plant. Veronico and Melillo (2021) recorded that, algae *Chlorella vulgaris* contain many vitamins, amino acids and natural growth regulators such as cytokinin and indole butyric acid, which due to retain of chlorophyll, prevent its decomposition, encourage both cell division and root growth, consequently it increasing plant resistance to pathogens specially plant parasitic nematode.

This study recommends the possibility of using the three treatments saponin extract, algae *C. vulgaris* and BioNematon (half dose) together in an integrated control program for root-knot nematodes *Meloidogyne incognita* that infected cowpea plants, as they are considered safety, cheap and available and have a greater effect than the chemical nematicide Carbofuran.

REFERENCES

93

المكافحة المتكاملة لنيماتودا تعقد الجذور التي تصبح نباتات اللوبيا

محمد سعید ابوقورة
قسم الحشرات الاقتصادية والحيوان الزراعي – كلية الزراعة – جامعة المنوفية – مصر

المختص العربي

أجريت هذه التجربة لتحقيق كفاءة مستخلص الصابونين، الطحلب الأخضر Chlorella vulgaris وبيد النيماتودا الحيوي بيوتيماتون (مستخلص تجارى لطرأ (Paecilomyces lilacinus) لنيماتودا تعقد الجذور التي تصبح نباتات اللوبيا وتأثيرهم على الصفات الخضرية للنباتات اللوبيا كذلك مقارنة تأثير المعاليمات بتلبيز نيماتودا الكيميائي الكاربیفوران.

ان المعاليمات أدت إلى خفض أعداد بيرقات نيماتودا تعقد الجذور من المعاليم الثنائية (مستخلص الصابونين + الطحلب + بيوتيماتون)، ونسبة موت في بيرقات نيماتودا تعقد الجذور (82٪) وبيلا ريد النيماتودا الكيميائي الكاربیفوران (93٪) وبيلا النيماتودون نصف جرعة الطحلب ومستخلص الصابونين عند تطبيقهم بصورة فردية بنسبة (6،7،6 و 8،3٪) على التوالي مقارنة مع معالمة الكنترول.

أدى تطبيق المعالمة الثلاثية (مستخلص الصابونين + الطحلب + نصف جرعة من بيوتيماتون) إلى نقص واضح في عدد الأدوات الكاملة، كل البيض والأعماش الجذرية بنسبة (85٪) على التوالي متوقعة على مبيد النيماتودا الكيميائي الكاربیفوران بنسبة (81٪) و (80٪) على التوالي كما أدى المعالمة الثلاثية إلى تحسين الصفات الخضرية للنباتات اللوبيا حيث أدى إلى زيادة طول النباتات، وزن المجموع الخضري وزن النسيج الجذري بنسبة (75٪) و(78٪) على التوالي مقارنة بالكنترول.

واستفادنا كنيرامج مكافحة متكاملة لنيماتودا تعقد الجذور التي تصبح نباتات اللوبيا وكذلك أنها أكثر أماناً وأخصاً مما أنها كانت من بيرقات نيماتودا تعقد الجذور والآدوات الكاملة والأعماش الجذرية وحسنت الصفات الخضرية للنباتات اللوبيا بنسبة أفضل من مبيد النيماتودا الكيميائي الكاربیفوران.

المختصر الإنجليزي

Integrated management of root- knot nematode, *Meloidogyne incognita* infecting cowpea plants

Meloidogyne incognita the causative root knot nematode of cowpea plants

Mohamed Saeid Abou Qura

Department of Insects-Economic and Agricultural Entomology, Faculty of Agriculture, Minufiyah University, Egypt

The objective of this study was to determine the effectiveness of Chlorella vulgaris and Paecilomyces lilacinus alone and in combination with Chlamydosporium vitulinum as a biological control agent of *Meloidogyne incognita* infecting cowpea plants and to compare its effects with the chemical agent carbofuran.

The results showed that the use of Chlorella vulgaris and Paecilomyces lilacinus alone and in combination with Chlamydosporium vitulinum as biological control agents of *Meloidogyne incognita* infecting cowpea plants significantly reduced nematode populations and improved plant growth and development.

The study concluded that the combination of Chlorella vulgaris and Paecilomyces lilacinus with Chlamydosporium vitulinum as a biological control agent of *Meloidogyne incognita* infecting cowpea plants is more effective and safer than the chemical agent carbofuran.