THE ROLE OF ENTOMOPATHOGENIC NEMATODES, STEINERNEMA SPP, IN THE BIOLOGICAL CONTROL OF AGROTIS IPSILON (LEPIDOPTERA: NOCTUIDAE)

S.A. Ibrahim(1), H.M. Mahfouz(1), Mahasen M. Elshershaby(2), Mona A. Hussein(3) and A.A. Dawod (2)

(1) Plant Production Department, Faculty of Environmental Agric., Sciences, El-Arish University
(2) Plants Protection Research Institute, Agricultural Researches Center
(3) Pests and Plant Protection Department, National Research Centre

Received: Jul. 11, 2017 Accepted: Jul. 25, 2017

ABSTRACT: The black cutworm, Agrotis ipsilon is one of the major pests with a wide host range; larvae spend most of their life in the soil. In this study, two strains of Entomopathogenic Nematodes (EPNs); Steinernema carpocapsae (All strain) and Steinernema scaptersci (SS) were tested for its virulence against the 4th instar larvae of A. ipsilon at laboratory and semi-field experiments under two types of soils (sandy and clay soil). Four concentrations of each strain were evaluated against 4th larval instar (5, 10, 20 and 40 Infective juveniles (IJ)s/larvae) were applied for the laboratory experiments, while the concentrations (50, 100 and 200 IJs/larvae) for semi-field experiments. Result show that, all treatments of S. carpocapsae induced higher mortality percentages than S. scapterssci, except at 5 IJs/larvae concentration for sandy soil application. In addition, it could be concluded that, S.carpocapsae in sandy soil treatment was highly effective than clay soil. In most treatments, it was observed that there were insignificant differences between S.carpocapsae and S.scapterssci except at 50 IJs/ml water for sandy soil where S.carpocapsae treatment induced higher mortality percentage at 200 IJs/ml water.

Key words: Entomopathogenic Nematodes, EPNs, Steinernema carpocapsae, Steinernema scaptersci, virulence, Black cutworm

INTRODUCTION

The black cutworm Agrotis ipsilon (Hufn.), consider one of the most important seedling pest of several economic plants, have a wide host range, feeding on nearly all vegetables and field crops. It attacks different field crops, such as cotton, soybean, corn, potatoes and tomatoes not only in Egypt but also in several countries. It was recorded to feed on a wide variety of plant (Busching and Turpin, 1977). The heavily use of pesticides to control different pests, caused a serious problems, pollutions, damage the environment and/or pose a threat to public health or ground water (Sharaby and El-Nojiban, 2015). The most usual form of pest control used by growers is the chemical control, where pesticides gradually became less effective and much more costly, in addition the side effect at the environmental pollutions, that is encourage scientists to search for biological alternative more safe method (Goudarzi et al., 2015). The pest biocontrol agents are far more environmentally friendly than chemical pesticides and in most cases retain their effect longer. The most chemical pesticides are capable of killing a wide spectrum of arthropods. In contrast, biocontrol agents are generally slower-acting, but cause longer-lasting biotic suppression of a specific pest population than chemical control (Abdel-Alim, 2005). Entomopathogenic nematodes (EPNs) application is one of the most considerable agents in pest management programs. Steinernematidae is the most famous families in entomopathogenic nematodes, it showed a good alternative to chemical insecticides, and it showed highest potential for
controlling insect pests under field condition (Lazink et al., 2010). The infective juveniles (IJs) of these nematodes carry a symbiotic bacterium. When infective juveniles enter to the host body cavity, they release the symbiotic bacterium which kills the host within 24-48 hours through the multiplies rapidly in the blood insect causing septicaemia and killing their hosts Akhurst and Smith (2002). The field of entomopathogenic nematodes as a biological control has experienced exponential over the past decade, it is a one of the famous alternative to chemical insecticides. This study was conducted to evaluate the effect of entomopathogenic nematodes against 4th instar larvae of the black cutworm; Agrotis ipsilon in sandy and clay soils.

MATERIALS AND METHODS

Rearing of the black cutworm, Agrotis ipsilon:
The adult moth of A. ipsilon was collected from light trap at Agricultural Researches Station of Sirs El-lyan, Menofia Governorate. Adults were reared in glass jars with a sex ratio of one male to four females. Maintenance of the culture was carried out according to El-shamy (2001).

Rearing of the grater wax moth, Galleria mellonella:
The adult of the greater wax moth, Galleria mellonella were collected from infested bee hives at Honey Bees Research Department, Plants Protection Researches Institute, Giza. Rearing technique was carried out under constant conditions according to Metwally et al. (2012). Full-grown last instar larvae were removed gently from the culture to use in the experiments and/or maintained the culture.

Rearing of entomopathogenic nematode:
Two strains of entomopathogenic nematodes; Steinernema carpocapsae all strain (ALL) and Steinernema scaptersci (SS) were supplied by Dr. Mona A. Hussein, pests and plant protection department, International Researches Centre (NRC), Giza. These nematodes were reared in full grown last instar larvae of the grater wax moth, G. mellonella.

Evaluation of four concentrations of two strains of nematodes S. carpocapsae and S. scaptersci against the fourth instar larvae of A. ipsilon:
To evaluate the efficiency of the tested nematode strains, the following experiments were carried out using two methods:

Filter paper experiments
This method was performed by using Petri dishes 20 cm in diameter which were furnished with one layers of filter paper on each. Five newly moulted 4th instar larvae of A. ipsilon were placed in each one.

Treatments were designed as follows:
1- The 1st experiment was inoculated with nematode suspension at rate of 5 IJs/larva using tap water. The control treatment was inoculated with the same volume of tap water only. The whole experiment was covered with parafilm sheath.
2- The 2nd experiment was prepared as the abovementioned step, with inoculated with 10 IJs/larva.
3- The 3rd experiment was inoculated with 20 IJs/larva.
4- The 4th experiment was inoculated with 40 IJs/larva.

The exposure period was 24 hours, and then larvae were transferred singly to other containers to avoid cannibalism. All containers were covered tidily to prevent larval escaping. Petri dishes were allowed to examine daily for 5 days, the dead larvae (cadavers) were transferred to White’s traps to collect the migrated nematodes. The whole experiment was replicated three times.
The role of entomopathogenic nematodes, steinernema spp, in the

Sandy soil experiments:
Plastic pots of 7 cm high, 5 cm diameter were filled with 80 g sterilized sieved sandy soil. Each pot was moistened with 20ml tap water in order to reach the final moisture content to 20%. Five newly moulted 4th instar A.ipsilon larvae were placed in each one and inoculated as aforementioned experiment using filter paper. The exposure period was 24 hours, and then larvae were transferred singly to other containers to avoid cannibalism. All containers were covered tidily to prevent larval escaping. Containers were allowed to examine daily for 5 days, the dead larvae (cadavers) were transferred to White’s traps to collect the migrated nematodes. The whole experiment was replicated three times.

Semi-field experiments:
To evaluate the efficacy of the same tested strains (S. carpocapsae and S. scaptersci) against 4th instar larvae of A.ipsilon, three nematode concentrations, 50, 100 and 200 IJs/larva were applied.
Plastic pots of 7 cm high, 5 cm diameter were filled with 120 g sterilized sieved soil. Each pot was moistened with 50ml tap water in order to reach the final moisture content to 20%. Five newly moulted 4th instar A.ipsilon larvae were placed in each one and inoculated as aforementioned experiment using filter paper. The exposure period was 24 hours, and then larvae were transferred singly to other containers to avoid cannibalism. All containers were covered tidily to prevent larval escaping. Containers were allowed to examine daily for 5 days; the dead larvae (cadavers) were transferred to White’s traps to collect the migrated nematodes. The whole experiment was replicated three times.

To study the role of sandy and clay soil types on the virulence of tested strains of nematodes against the 4th larval instar of the black cutworm, A. ipsilon, the following steps were applied:

1- The aforementioned steps were prepared using sandy soil.
2- The 2nd test was using clay soil.
3- While the 3rd test was using Petri dishes embedded with filter paper.

Statistical analysis:
Mortality percentages were corrected using Abbott's formula (Abbott, 1925). LC50's were calculated using the LDP-Line computer program according to Finney (1971). The variance between treatments was calculated using Analyses of Variance (ANOVA) F-test, and the differences between means were estimated using Duncan's Multiple Range Test (SAS, 2007).

RESULTS AND DISCUSSION
Laboratory experiments:
The obtained data in Table (1) and Figures (1, 2) show the effect of the two tested strains of the entomopathogenic nematode (EPN) against the 4th larval instar of A. ipsilon at different substrates. It was observed that the LC50 values for S.carpocapsae was 8.058 IJs/larva (Fig. 1-a) and was 19.741 IJs/larva for S.scaptersci (Fig. 2-a) at filter paper substrate treatment. While the corresponding figure of the sand soil substrate treatment, the LC50 values were 6.98 IJs/larva (Fig. 1-b) and 7.07 IJs/larva (Fig. 2-b), respectively.

The LC50 values were 41.37 and 30.47 IJs/larva for S.carpocapsae treatment at filter paper and sand soil substrate, respectively. As for S.scaptersci treatment, the LC50 values were 194.25 IJs/larva in filter paper substrate and it was 5547.64 IJs/larva in sand soil substrate (Table 1).

Virulence of tested EPN strains:
Steinernema carpocapsae application:
The obtained results in Table (2) indicated that, the highest mortality percentage of the black cutworm larvae was recorded at the treatment of 40 IJs/larva for S.carpocapsae applied on sand soil treated substrate (100%), followed by 40 IJs/larva applied on filter paper treated substrate
S.A. Ibrahim, et al.,

(93.11%); being significantly different between each other and with all other treatments. While the 20 IJs/larva concentration, inducing 86.22 and 82.03% mortality, respectively for filter paper and sand soil treatments; being insignificantly different between each other, but both values were significantly different with all other treatments (Table 2).

Table (1): Virulence of the of two tested EPN strains against the 4th instar larvae of *A. ipsilon* applied on two different treated substrates under laboratory conditions

<table>
<thead>
<tr>
<th>Steinernema spp.</th>
<th>Treated substrate</th>
<th>LC<sub>50</sub> (IJs/larva)</th>
<th>LC<sub>95</sub> (IJs/larva)</th>
<th>Slope ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. carpocapsae All strain</td>
<td>Filter paper</td>
<td>8.058</td>
<td>41.373</td>
<td>2.30±0.23</td>
</tr>
<tr>
<td></td>
<td>Sand soil</td>
<td>6.987</td>
<td>30.475</td>
<td>2.57±0.27</td>
</tr>
<tr>
<td>S. scaptersci</td>
<td>Filter paper</td>
<td>19.741</td>
<td>194.257</td>
<td>1.66±0.21</td>
</tr>
<tr>
<td></td>
<td>Sand soil</td>
<td>7.077</td>
<td>5547.642</td>
<td>0.57±0.19</td>
</tr>
</tbody>
</table>

Fig. (1-a&b). Ldp-line of *S.carpocapsae* against the 4th instar larvae of *A. ipsilon* applied by filter paper and sand soil method

Fig. (2-a&b). Ldp-line of *S.scaptersci* against the 4th instar larvae of *A. ipsilon* applied by filter paper and sand soil method
The role of entomopathogenic nematodes, *steinernema* spp, in the …

Table (2): Mortality percentages of 4th instar larvae of *A. ipsilon* by applying different concentration of two EPN strains using two treated substrates under laboratory conditions

<table>
<thead>
<tr>
<th>Concentration (IJs/larva)</th>
<th>Treated substrate</th>
<th>% Mortality (Mean± SE)</th>
<th>T-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S. carpocapsae</td>
<td>S. scapersci</td>
</tr>
<tr>
<td>5</td>
<td>filter paper</td>
<td>33.11±1.80 f A</td>
<td>20.00±1.44 g B</td>
</tr>
<tr>
<td></td>
<td>sand soil</td>
<td>33.33±1.45 f B</td>
<td>46.67±1.15 e A</td>
</tr>
<tr>
<td>10</td>
<td>filter paper</td>
<td>53.10±1.06 e A</td>
<td>26.67±1.15 f B</td>
</tr>
<tr>
<td></td>
<td>sand soil</td>
<td>73.11±2.18 d A</td>
<td>53.33±1.73 d B</td>
</tr>
<tr>
<td>20</td>
<td>filter paper</td>
<td>86.22±1.53 c A</td>
<td>46.67±1.57 e B</td>
</tr>
<tr>
<td></td>
<td>sand soil</td>
<td>82.03±1.50 c A</td>
<td>60.66±1.76 c B</td>
</tr>
<tr>
<td>40</td>
<td>filter paper</td>
<td>93.11±1.82 b A</td>
<td>73.33±1.73 a B</td>
</tr>
<tr>
<td></td>
<td>sand soil</td>
<td>100±0.00 aA</td>
<td>66.67±3.46 b B</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>0.00±0.00 g</td>
<td>0.00±0.00 h</td>
</tr>
<tr>
<td>F-value</td>
<td></td>
<td>543.993**</td>
<td>196.064**</td>
</tr>
</tbody>
</table>

**=Highly significant
Means followed by the same small or capital letter are not significantly different at 5%

The second group was 10 IJs/larva concentration, which induced 53.10 and 73.11% mortality for filter paper and sand soil treatments, respectively; being significantly different between each other and with other concentrations. The least effective concentration was 5 IJs/larva, which induced only about 33% mortality for each of filter paper or sand soil treated substrate; being insignificantly different between each other, but was significantly different with other treatments (Table 2).

Steinernema scapersci application:

From the corresponding figure of *S. scapersci* application, it was observed that, the highest mortality percentage was recorded at 40 IJs/larva concentration on filter paper treatment, which gave 73.33% mortality, followed by 66.67% mortality at the same concentration for sand soil application; being insignificantly different between each other and with other concentrations (Table 2).

While the lowest mortality percentage was recorded at 5 IJs/larva concentration for filter paper application (20.00%), followed by 26.67% at 10 IJs/larva concentration, then 46.67% at 20 IJs/larva concentration (Table 2).

Generally, almost all filter paper treatment gave the low mortality percentages compared with the sand soil treatment of all tested concentrations, except at 40 IJs/larva treatment, where the filter paper treatment induced 77.33% compared to 66.67% in sand soil treatment (Table 2).

A comparison was conducted between the virulence of the two tested strains according to substrate application (filter paper or sand soil) was recorded at Table (2). It was observed that, all treatments, *S. carpocapsae* induced higher mortality percentage than *S. scapersci*, except at 5 IJs/larva concentration for sand soil application, where *S. scapersci* induced higher mortality percentage (46.67%) (Table 2).
Semi-field experiments:

Results in Table (3) show the effect of the two tested entomopathogenic nematode against 4th larva instar of A.ipsilon in semi-field experiments with different treated substrates.

The LC50 value for S. carpocapsae in treated filter paper was 30.149 IJs/larva, while in case of S. scaptersci application the LC50 was 78.881 IJs/larva. In case of sand soil treated substrate the LC50 values were 12.317 and 18.628 IJs/larva for S. carpocapsae and S. scaptersci, respectively. Lastly, the LC50 values for S. carpocapsae and S. scaptersci at clay soil treatment it were 17.104 and 10.222 IJs/larva, respectively.

It could be concluded that, in case of S. carpocapsae treatment, sand soil substrate was the most suitable one for EPN activity, followed by clay soil and then filter paper, where the LC50 was 12.317, 17.104 and 30.149 IJs/larva (Table 3). While the corresponding figure for S. scaptersci treatment was slightly different, where the clay soil was the most suitable substrate, followed by sand soil and then filter paper, where the LC50 values were 10.222, 18.628 and 78.881 IJs/larva, respectively (Table 3).

As for the LC95 values, it was observed that, in S. carpocapsae treatment, clay soil substrate was the most suitable substrate for the EPN activity, giving the least IJs number (57.41IJs/larva), followed by the sand soil (109.961 IJs/larva) then the filter paper substrate (163.961 IJs/larva) (Table 3).

While in case of S. scaptersci treatment, the same trend that mentioned above was observed, where the clay soil was the most suitable substrate, followed by sand soil the filter paper, where the LC95 values were 59.697, 435.298 and 109.146 IJs/larva, respectively (Table 3).

Virulence of tested nematodes:

Steinernema carpocapsae application:

The obtained results in Table (4) clarify that the larval mortality percentage of the black cutworm larvae showed correlated manner with the concentrations used, i.e., IJs/larva.

The highest mortality percentage was observed at the 200 IJs/larva concentration in all treated substrates, and also at 100 IJs/larva concentration for clay soil substrate.

The percentage of mortality could be arranged as follows with respect to the treated substrate: 93.32 > 93.33 > 86.67 > 79.83 > 73.33% for 100 IJs/larva (sand soil) > 50 IJs/larva (clay soil) > 50 IJs/larva (sand soil) > 100 IJs/larva (filter paper) then 50 IJs/larva (filter paper), respectively (Table 4).

| Table (3): Virulence of the two tested EPN strains against the 4th instar larvae of A.ipsilon applied by three substrates under semi-field conditions |
|---------------------------------|-----------------|-----------------|-----------------|
| **Steinernema spp** | **Substrate** | **LC50** | **LC95** |
| | | (IJs/larva) | (IJs/larva) | Slope ± SE |
| S.carpocapsae All strain | filter paper | 30.149 | 163.961 | 2.2365±0.4276 |
| | sand soil | 12.317 | 109.146 | 1.7360±0.4280 |
| | clay soil | 17.104 | 57.41 | 3.1279±1.2590 |
| S.scaptersci | filter paper | 78.881 | 1079.387 | 1.4477±0.3061 |
| | sand soil | 18.628 | 435.298 | 1.2018±0.3501 |
| | clay soil | 10.222 | 59.697 | 2.1462±0.8577 |
The role of entomopathogenic nematodes, steinernema spp, in the

Table (4): Virulence of the two tested EPN strains against the 4th instar larvae of A.ipsilon
applied on three different substrates under semi-field conditions

<table>
<thead>
<tr>
<th>Concentration (IJs/larva)</th>
<th>Treated substrate</th>
<th>% Mortality (Mean±SE)</th>
<th>T-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.carpocapsae</td>
<td>S.saptersci</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>filter paper</td>
<td>73.33±1.59 e A</td>
<td>4.343*</td>
</tr>
<tr>
<td></td>
<td>sand soil</td>
<td>86.67±2.21 c A</td>
<td>5.549**</td>
</tr>
<tr>
<td></td>
<td>clay soil</td>
<td>93.33±1.48 b A</td>
<td>0.00 Ns</td>
</tr>
<tr>
<td>100</td>
<td>filter paper</td>
<td>79.83±2.45 d A</td>
<td>0.939 Ns</td>
</tr>
<tr>
<td></td>
<td>sand soil</td>
<td>93.32±1.83 b A</td>
<td>1.762 Ns</td>
</tr>
<tr>
<td></td>
<td>clay soil</td>
<td>100.00±0.0 a A</td>
<td>---</td>
</tr>
<tr>
<td>200</td>
<td>filter paper</td>
<td>100.00±0.0 a A</td>
<td>8.445**</td>
</tr>
<tr>
<td></td>
<td>sand soil</td>
<td>100.00±0.0 a A</td>
<td>11.544**</td>
</tr>
<tr>
<td></td>
<td>clay soil</td>
<td>100.00±0.0 a A</td>
<td>---</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>0.00 f</td>
<td>0.00 e</td>
</tr>
<tr>
<td>F-value</td>
<td></td>
<td>488.766 **</td>
<td>30.535 **</td>
</tr>
</tbody>
</table>

**=Highly significant *=Significant NS=Not significant

Means followed by the same small letter are not significantly different between concentration and the same capital letters are not significantly different between nematode species at 5%

Steinernema saptersci application:
The corresponding figure in S.saptersci treatments for the larval mortality percentage in different treated substrates showed that the highest mortality percentage (100%) was observed in clay soil treatment at 100&200 IJs/larva. Tested concentrations could be arranged according to its influence as follows: clay soil at 50 IJs (93.33%)>sand soil at 100 & 200 IJs/larva (86.67%)>filter paper at 200 IJs/larva (73.33%)> sand soil at 50 IJs/larva (66.67%)>filter paper at 100 IJs/larva (65.33%) then filter paper at 50 IJs/larva (40.00%), respectively (Table 4).

Comparing the virulence of the tested EPN strains:
A comparison was carried out between the virulence of the two tested strains according to substrate application (filter paper, sand soil or clay soil) and was recorded at Table (4).

It was observed that, nearly at all treatments, there was insignificant differences between S.carpocapsae and S.saptersci strains, except at 50 IJs/larva concentration for filter paper and sand soil application, on one side and between filter paper treatment at 200 IJs/larva concentration, where S.carpocapsae treatments induced higher mortality percentage than S. sapersciet treatments (Table 4).

The obtained results are in harmony with those obtained by Hassan et al. (2016), who evaluated the virulence of entomopathic nematodes, Steinernema glaseria and Heterorhabditis bacteriophora Poiner (Hp88 strains) against 3th, 4th, 5th and 6th instar larvae of the black cutworm Agrotis ipsilon, and found adequate mortality caused by both tested nematodes at different time intervals. They resulted that the two nematode strains; Steinernema glaseria and Heterorhabditis bacteriophora had a significant effects against different instar larvae of Agrotis ipsilon. In addition, Veerle et al. (2016) studied the efficacy of
entomopathogenic nematodes against larvae of *Tuta absoluta* in the laboratory, and concluded that the potential of EPNs as a biological control agent against larvae of the tomato leaf miner *Tuta absoluta*. *Steinernema feltiae* and *S. carpocapsae* showed better efficacy than *H. bacteriophora*, where at 18°C and 25°C, *S. feltiae* killed 100% of the third instars, under laboratory conditions.

ACKNOWLEDGMENT
The authors are grateful to Prof. Dr. Mohammed A. Gesraha, at Pests and Plant Protection Department, National Research Centre for his constructive help and support.

REFERENCES
The role of entomopathogenic nematodes, steinernema spp, in the

دور النيماتودا الممرضة للحشرات
للدولة الباردة

ـ سيد علي أحمد إبراهيم(1) ، حاتم محمد محفوظ(2) ، محassen محمد أحمد الشرشابي(2) ، منى أحمد حسين(3) ، عمرو أحمد داود(2)

قسم الانتاج النباتي - كلية العلوم الزراعية البيئية بالعريش

1) معهد بحوث وقاية النباتات
2) المركز القومي للبحوث
3) المختص العربي

الملخص

تعد حشرة الدولة الباردة Agrotis ipsilon من الآفات شديدة الخطورة على الزراعات خاصة في مرحلة البذرة. حيث تضرر النباتات على سطح النبتة وتمالدودة الباردة بستة أعمار برقية ويعتبر العمر الباري الربع هو أشد وأخطر الأعمر الباريء ضرراً على الزراعات لذلك اعتُمدت هذه الدراسة على مكافحة العمر الباري الربع للدولة الباردة باستخدام سلالتين من النيماتودا الممرضة للحشرات من عائلة الـ Steinernematidae هما Steinernema scapterisci (SS) و Steinernema carpocapsae (All) وتم إجراء هذا البحث في محطة البحوث الزراعية بسّر الليان - محافظة المنوفية وذلك من خلال إجراء التجارب العملية والتجريبية على عينات من النبتة الرملية والنبتة الطينية. تم استخدام أربعة تركيزات من كل سلالة من السلالات محل الدراسة وكانت التركيزات هي (5-10-20-40 طور مئي لكل برقة في التجارب العملية و250-500 طور مئي لكل برقة في التجارب التجريبي). وكانت أهم النتائج التي توصل لها هذا البحث أن استخدام النيماتودا الممرضة للحشرات التابع لعائلة الـ Steinernematidae ضد الدولة الباردة أدى إلى حدوث نسبة موت جيدة ومتوازنة على عيّنات العمر الباري الربع للدولة Steinernema carpocapsaeファリアق. وقد سجّل أعلى نسبة موت لبقاع الدولة الباردة مع سلاة الـ S. carpocapsae في جميع التركيزات ما عدا التركيز 5 طور مئي لكل برقة وذلك تحت ظروف النبتة الرملية.

توصي البحوث باستخدام النيماتودا الممرضة للحشرات S. carpocapsae ضمن برامج المكافحة المتكاملة للدولة الباردة وخاصة في الأراضي الرملية.